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ABSTRACT 

In this paper, we consider the problem of detecting wet area on the floor inside a room using a monocular camera mounted near 

the ceiling. We use a set of Gabor filters on a floor image and apply nonlinear transformations on the filtered images in order to 

create feature images. Based on the feature images we create a feature vector for each pixel in the input image. Then we use K-

mean clustering with K=2 on the normalized feature vectors and process the resulting clusters to create wet floor segmentations. 

Our experimental results show that more than 50 percent of wet area of the entire floor can be detected given that the camera 

has a limited amount of motion (e.g., pan and tilt motions). This problem appears as a sub-problem in many unmanned 

monitoring systems. Our method results a fast, low-cost and robust solution for this problem. 

 

Keywords: water detection, Gabor filter, K-mean clustering, unmanned monitoring system. 

 

 

1. Introduction 

We consider the problem of detecting water on 

floor in an indoor environment using a monocular 

camera mounted near the ceiling of a room where the 

camera can be moved in pan and tilt directions to cover 

the entire floor area of the room. We assume that the 

system is unmanned, and the main objective of this 

system is to raise alarm at an early stage of possible 

flooding. Indoor water detection from color images is a 

difficult task. The main visible changes due to a layer of 

water on a floor are (a) some portion of the wet floor 

reflects light beam in a particular direction (specular 

reflection) and as a result that portion looks highly 

bright if the camera is placed at the direction of the 

reflected light beam and (b) if the camera does not 

receive reflected light beam from a wet surface, then 

that surface appears slightly darker as compared to 

neighboring dry surface. Since our objective is to detect 

water at a very early stage, we cannot wait for the 

specular reflection which may or may not come to the 

camera before water crosses dangerous level. In this 

paper, we propose a robust solution that uses the fact 

that water presence changes the texture appearance of 

the dry floor. Our algorithm in general does not depend 

on any specular reflection from the water covered 

surface. Since it is difficult to gather huge amount of 

image data consisting of water covered floor, we have 

used a self-supervised approach.  

 

2. Related Works 

Teshima et al. worked on a similar problem. They 

use a moving camera to detect water based on the 

specular reflection reflected from wet surface [1]. Our 

case is different because we use a camera mounted in a 

fixed place with little amount of motion in pan and tilt 

directions. Since our system covers a wide area of floor 

we cannot depend only on specular reflection. Achar et 

al. proposed a self-supervised algorithm for outdoor 

river scene detection [2]. Our problem is very different 

from that of Achar et al. Their work separates the river 

surface from the surrounding environment in an outdoor 

environment whereas in our case, we need to separate 

water covered surface from dry floor surface in an 

indoor environment. Rankin and Matthies presented a 

daytime water detection solution using color variation 

[3]. Iqbal et al. published a nice review paper that gives 

a survey on outdoor water hazard detections [4]. 

Santana et al. proposed a water detection technique 

based on water motion in an outdoor environment [5].  

 

To the best of our knowledge, there is no previous 

solution for this problem under our settings. In fact, this 

problem is a sub-problem of a commercial application 

that we are currently working on. We searched 

thoroughly but failed to get a suitable solution. The 

closest solution has been given by Teshima et al. [1]. 

However, their solution uses a moving camera which is 

not feasible for our target area (establishment of the 

mechanism for moving a camera just below the ceiling 

of a big room is expensive). For completeness, the 

summary of our results for 16 images and the results of 

Teshima et al. have been shown in Table 1. 

 

Table 1 Comparison of our results with results of 

Teshima et al. 

 Precision rate (%) Recall rate (%) 

Results of 

Teshima et 

al. [1] 

 

81.1 

 

34.1 

Our Results Max Min Avg Max Min Avg 

100 0 82.7 100 0 86.2 

 

3. Working Environment 

The main objective of our work is to detect water 

layer on the floor area in a room. We assume that our 

target environment has these following properties: 

 

1. The environment is a large room with no 

window. 

2. There are just a few light sources on the ceiling 

and a camera is mounted in a corner of the 

room near the ceiling. 
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3. The camera can be moved 120 deg in the pan 

direction and 90 deg in the tilt direction, where 

zero-degree tilt means that the camera is 

directed to the horizontal direction and 90-

degree tilt means that the camera is directed to 

the downward direction. 

4. The camera has a high focal length (more than 

70 mm) and as a result, from most of the 

directions the images contain only floor area.  

5. For some directions images contain the wall or 

some other furniture but using suitable 

segmentation algorithm we can easily separate 

the floor part from the adjacent wall or 

furniture parts. More precisely, since we know 

the pan and tilt angle associated to each image, 

we can determine (using some pre-processing 

technique) which part of that image contains 

floor area.  

6. The working area of our algorithm is not 

necessarily of rectangular shape. Although 

each image is rectangular, we can use suitable 

masking to work on almost any shape as we 

like.    

7.  We split each input image into non 

overlapping sub images of size 640×480 each 

and ignore the remaining part (input image size 

is 6720×4480). We call each sub-image a zone 

image or a zone in short. Our algorithm works 

on all the zones one by one.  

8. We assume that at the beginning, the floor 

corresponding to each zone is completely dry 

and at that time the algorithm captures the 

information related to the dry floor and use this 

information later to detect water presence 

(hence it is self-supervised). Since in the room 

there is no window, we assume that 

Lambertian component of dry floor surface 

radiance is constant [6] and the specular 

component of dry floor surface radiance is 

negligible as compared to the specular 

component of water covered floor surface 

radiance.  

9. We assume that if floor is covered by a layer of 

water surface, then a major portion of the 

specular reflection of each light source goes to 

a particular direction. If this direction hits the 

camera sensor, the image contains much bright 

area (see Fig.1). This area can easily be 

detected in the image by using proper 

thresholding. However, since the specular 

reflection depends heavily on the surface 

normal, corresponding light source position, 

camera position and camera orientation, only a 

small portion of the entire floor area may 

reflect a light beam to the camera as specular 

reflection. After thresholding, we consider each 

connected component of specular reflection 

one by one and categorize into two groups (a) 

slim: the component does not contain a circle 

of radius ρ and (b) fat: the component contains 

a circle of radius ρ, where ρ is a parameter, 

whose value is decided empirically. We 

consider that each fat component contains 

water layer, and each slim component is either 

a noise or a water droplet. We compute the   

area of each fat component and remove them 

from the image by masking and apply our 

algorithm on the remaining part of the image. 

We can combine water layer under each fat 

component with the result returned from our 

algorithm and compute approximately the 

amount of water in each zone. So, from now on, 

we consider that each image does not contain 

any fat component. 

 

 
 

Fig.1 Specular reflection from water surface. The red 

rectangle contains a fat component, and the green 

rectangle contains a slim component  

 

4. Outline of Algorithm 

We implement our algorithm on each zone 

independently. In this section we will explain the 

overall algorithm on a particular zone which is a 

grayscale image.  

 

Assuming that the values of D, d, and δ will be 

decided later, the high-level idea of our algorithm 

applied on each zone is given as follows: 

1. In the preprocessing step, we collect D×D 

pixel values from around the center of the zone. 

In this step, the whole zone is dry. Let D-dry 

be the set of D×D pixels. For each zone we 

save corresponding D-dry as a bitmap image.  

2.  We apply the algorithm explained in the next 

section to create a feature vector for each pixel 

in the zone. 

3. Using K-mean (K=2) Clustering algorithm we 

cluster the pixels into two groups group-A and 

group-B. Let {A1, A2,…An} and {B1, B2,…Bm} 

be sets of connected components of group-A 

and group-B respectively, where each 

component contains a d×d square inside it (we 

ignore any component that is too small to 

contain a d×d square). Let us assume that 
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A1,A2,…,An and B1,B2,…,Bm are sorted 

according to their sizes in non-increasing order.    

4. Let A1
d and B1

d be two d×d boxes inside A1 and 

B1 found by detecting the largest circle inside 

A1 and B1 respectively. We can use algorithms 

explained in [7] to get these boxes. Let 

da
1,da

2,da
3… are Mahalanobis distances from 

each element of A1
d to the set D-dry and let ad-

dry be the average of these distances. Similarly, 

we calculate bd-dry for set B1
d. If A1(B1) is 

empty, then let us consider that ad-dry(bd-dry) 

is zero. Without loss of generality let us 

assume that ad-dry <= bd-dry. Depending on the 

values of ad-dry and bd-dry we follow the 

following rules: 

a. Both ad-dry < δ and bd-dry < δ: the 

whole zone is dry 

b. Both ad-dry >= δ and bd-dry >= δ: the 

whole zone is covered by water 

c. ad-dry < δ and bd-dry >= δ: first 

initialize W = {B1} and then for 

B2,…,Bm we do the following - for 

each Bi 2<=i<=m, we find a d×d box 

inside Bi and find bi-dry as the 

average of Mahalanobis distances 

from elements in this d×d box to D-

dry. If bi-dry >= δ, we update W ← 

W∪{Bi}. Finally, we consider that 

the components of W indicate the wet 

segments in the zone.  

 

5. Implementation Detail 

The backbone our algorithm is an unsupervised 

texture segmentation which follows closely the idea 

given in [8]. We capture the features from the zone 

image through a set of filters, keep a subset of these 

filtered images based on some greedy algorithm and 

then apply a nonlinear function on these filtered images. 

Finally, we apply K-mean Clustering for K=2 and apply 

the algorithm explained in the previous section to detect 

water on floor.  

 

We use Gabor filter to get filtered images. A Gabor 

filter in spatial domain can be given by: 

 

𝑡 = 𝑔(𝑥, 𝑦; 𝜆, 𝜃, 𝜓, 𝜎, 𝛾) = 

exp(−
𝑥′

2
+ 𝛾2𝑦′

2

2𝜎2
)cos(2𝜋

𝑥′

𝜆
+ 𝜓) 

 

with  

 

𝑥′ = 𝑥𝑐𝑜𝑠𝜃 + 𝑦𝑠𝑖𝑛𝜃and𝑦′ =−𝑥𝑠𝑖𝑛𝜃 + 𝑦𝑐𝑜𝑠𝜃 

 

where λ is the wavelength of the sinusoidal factor, θ 

represents the orientation, ψ is the phase offset, σ is the 

standard deviation and ϒ is the spatial aspect ratio.    

 

Each zone has dimension (640×480). We applied 

28 filters for each θ in {0, 45, 90, 135} and λ = {image-

width/radial-frequency} where radial-frequency ∈ 

{4√2, 8√2, 16√2, 32√2, 64√2, 128√2, (image-

width/4)√2}. For each filter we use a kernel of size = 17 

with ψ = 1, σ = 7 and ψ = 0. In a similar way as 

explained in [8], we use following steps in order to get a 

feature vector for each pixel in the zone which is a 

grayscale image.  

 
1. We apply the above-mentioned Gabor filters 

on the zone image to get a set of filtered 

images. 
2. We select a subset of filtered images in a 

greedy way so that the following condition 

holds: Let s(x,y) and s1(x,y) be reconstruction 

of the zone images by adding all filtered image 

and the selected subset of filtered images 

respectively. Then,  

 

𝑆𝑆𝐸 = ∑[𝑠1(𝑥, 𝑦) − 𝑠(𝑥, 𝑦)]2

𝑥,𝑦

 

𝑆𝑆𝑇𝑂𝑍𝑇 = ∑𝑠(𝑥, 𝑦)2

𝑥,𝑦

 

𝑅2 = 1 −
𝑆𝑆𝐸

𝑆𝑆𝑇𝑂𝑇
≥ 0.95 

 

We select filtered images one by one in a 

greedy way until R2 becomes at least 0.95. The 

greedy algorithm is same to the corresponding 

algorithm explained in [8] so we skip the detail 

here. 
3. We apply a nonlinear transformation to each 

selected filtered image. More precisely, for 

each selected filtered image, we apply 

normalization so that the minimum and 

maximum are -8 and 8 respectively. On each 

pixel of the filtered image, we apply the 

following activation function and take the 

absolute value with α = 0.25: 

 

𝜑(𝑡) = tanh(𝛼𝑡) = 
1 − 𝑒𝛼𝑡

1 + 𝑒𝛼𝑡
 

 

We then apply a gaussian filter of size 35×35 

with σ = 0.5×image-width/radial-frequency and 

call the resulting image a feature image.  
4. For each pixel (row, col) of the zone image, we 

create a feature vector like this: first we take 

pixel values of all feature images at position 

(row, col) and combine them to create a feature 

vector and then we insert row, and col at the 

top of this feature vector. These row and col 

values in each feature vector help to combine 

neighboring pixels while clustering.  
5. Finally, we normalize the feature vectors 

across all but top two dimensions (row, and 

col). This step is not that crucial. It just helps 

the K-mean Clustering algorithm work better.  
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For the entire algorithm explained in the previous 

section and in this section, we choose D = 200, d = 50, ρ 

= 30. The value of threshold δ has been decided 

empirically as 2.8. This threshold depends mainly on the 

dry floor texture and can be decided in the 

preprocessing stage.  

 

6. Experiments and Results 

We apply our algorithm on 16 zone-images with 

size of 640×480 each, where 6 of them are completely 

dry and remaining are partially wet. Fig. 2 shows a zone 

image and one filter and two feature images of this zone 

image. One can observe that although wet area is not 

that distinctively visible in the original image, that wet 

area is quite visible (as bright part) in one of the feature 

images.   

 

  

  
 

Fig.2 Top left: zone image, Top right: filtered image, 

Bottom: two feature images 

 

For each zone, first we compute the segmentation 

that gives dry and wet floor areas. And then we compute 

intersection over union IoU score for the wet area of our 

segmentation result and ground truth. Our results show 

that 4 zones give score over 90% each, 2 zones give 

score over 60% each 1 zone gives score over 50% and 

all 6 dry floor zones has been classified successfully. 

One false negative result (result shows dry but there is 

water on the floor) has been found and one result shows 

much more water than the actual amount of water (score 

= 19%). Fig.3 shows two samples where water has been 

detected with sufficient accuracies (94% IoU and 96% 

IoU respectively). Fig. 4 shows the sample where 

accuracy is very low (19% IoU) and the sample that 

gives false negative result. Let Ws and Wg be water area 

from our algorithm and from ground truth respectively. 

In Fig. 3 and Fig. 4, yellow part is Ws∩Wg, red part is 

Wg – (Ws ∩Wg ) and green part is Ws – (Ws ∩Wg ). For 

each zone we also compute Precision and Recall rates. 

Detailed results of our experiments on 16 images are 

shown in Table 2. 

 

 It should be noted that in both the cases in Fig. 4, 

the amount of water is very low. Although both have 

similar amount of water, in the false negative case the 

floor is bit darker than that of low accuracy case. As a 

result, in the false negative case, the algorithm cannot 

differentiate the dry floor part from the wet floor part. 

These two zone images have been shown in Fig. 5.  

 

  
 

Fig.3 Overlapping of segmentation results and ground 

truths for two zones 

 

  
 

Fig.4 Left: segmentation result accuracy is very low 

(19 %), Right: false negative result. 

 

  
 

Fig.5 Left: zone image for the case with low accuracy 

(19 %), Right: zone image for the false negative case. 

 

Table 2 Detailed results of our experiments 

 IoU Precision 

(%) 

Recall 

(%) 

Remark 

Image 01 0.941 94.9 99.1  

Image 02 0.964 98.7 97.7  

Image 03 0.773 77.3 100  

Image 04 0.696 70 99.1  

Image 05 0.917 99.8 91.9  

Image 06 0.938 99.8 93.9  

Image 07 0.54 97 54.9  

Image 08 1 100 100 Dry floor 

Image 09 1 100 100 Dry floor 

Image 10 1 100 100 Dry floor 

Image 11 1 100 100 Dry floor 

Image 12 1 100 100 Dry floor 

Image 13 1 100 100 Dry floor 

Image 14 0.19 19.1 99.4  

Image 15 0.355 66.5 43.3  

Image 16 0 0 0 False 

negative 

Average 0.77 82.7 86.2  
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c 

 

5. Discussion 

Water detection on floor is a difficult task specially 

when the camera is monocular, and the position of light 

sources are such that light beam after specular reflection 

does not go to the camera sensor directly. We present a 

self-supervised and efficient algorithm to detect water 

on floor. Our algorithm gives good results (in terms of 

IoU, Precision rate and Recall rate) for most of the cases. 

In the future it would be interesting to improve the 

performance of this algorithm.  

 

8. References 

 
[1] Teshima, T., Saito, H., Shimizu, M., & Taguchi, A. 

(2009). Classification of Wet/Dry Area Based on 

the Mahalanobis Distance of Feature from Time 

Space Image Analysis. In MVA (pp. 467–470). 

[2] Achar, S., Sankaran, B., Nuske, S., Scherer, S., & 

Singh, S. (2011). Self-supervised segmentation of 

river scenes. In 2011 IEEE International 

Conference on Robotics and Automation (pp. 

6227-6232). 

[3]  Rankin, A., & Matthies, L. (2010). Daytime water 

detection based on color variation. In 2010 

IEEE/RSJ International Conference on Intelligent 

Robots and Systems (pp. 215–221). 

[4] Iqbal, M., Morel, M., & Meriaudeau, F. (2009). A 

survey on outdoor water hazard detection. Skripsi 

Program Studi Siste Informasi.. 

[5] Santana, P., Mendonça, R., & Barata, J. (2012). 

Water detection with segmentation guided 

dynamic texture recognition. In 2012 IEEE 

international conference on robotics and 

biomimetics (ROBIO) (pp. 1836–1841). 

[6] Ikeuchi, K., & Sato, K. (1991). Determining 

reflectance properties of an object using range and 

brightness images. IEEE Transactions on Pattern 

Analysis and Machine Intelligence, 13(11), 1139-

1153.  

[7]   R. C. Gonzalez and R. E. Woods. Digital Image 

Processing. Prentice-Hall, 2002 

[8]  Jain, A., & Farrokhnia, F. (1991). Unsupervised 

texture segmentation using Gabor filters. Pattern 

recognition, 24(12), 1167–1186. 

 

 

 

 

 

 

 

 

 


